The Sum-product Estimate for Large Subsets of Prime Fields

نویسنده

  • M. Z. GARAEV
چکیده

Let Fp be the field of prime order p. It is known that for any integer N ∈ [1, p] one can construct a subset A ⊂ Fp with |A| = N such that max{|A+ A|, |AA|} p|A|. One of the results of the present paper implies that if A ⊂ Fp with |A| > p2/3, then max{|A+ A|, |AA|} p|A|.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

un 2 00 7 the sum - product estimate for large subsets of prime fields

Let F p be the field of a prime order p. It is known that for any integer N ∈ [1, p] one can construct a subset A ⊂ F p with |A| = N such that max{|A + A|, |AA|} ≪ p 1/2 |A| 1/2. In the present paper we prove that if A ⊂ F p with |A| > p 2/3 , then max{|A + A|, |AA|} ≫ p 1/2 |A| 1/2 .

متن کامل

A Quantified Version of Bourgain's Sum-Product Estimate in Fp for Subsets of Incomparable Sizes

Let Fp be the field of residue classes modulo a prime number p. In this paper we prove that if A,B ⊂ F∗p, then for any fixed ε > 0, |A + A| + |AB| (

متن کامل

BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES

We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...

متن کامل

Sum–product Estimates and Multiplicative Orders of Γ and Γ + Γ−1 in Finite Fields

Using a recent result on the sum–product problem, we estimate the number of elements γ in a prime finite field such that both γ and γ + γ−1 are of small order. 2010 Mathematics subject classification: primary 11T30; secondary 11B30.

متن کامل

Set Addition and Set Multiplication

Let A be a subset of a ring with cardinality |A| = N . The sum set and the product set are 2A = A+A = {a1 +a2 | ai ∈ A} and A = AA = {a1a2 | ai ∈ A}. The study of sum-product sets is to estimate the sizes of 2A and A asymptotically when N is very large. Since Erdős and Szemerédi conjectured that if A ⊂ Z, at least one of |2A| and |A2| should be bigger than cN for any constant c, a lot of work h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008